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Abstract—In the last decade, serverless computing emerged
as a new compelling paradigm for the deployment of cloud
applications and services. It represents an evolution of cloud
computing with a simplified programming model, that aims to
abstract away most operational concerns. Running serverless
applications requires users to configure multiple parameters, such
as memory, CPU, cloud provider, efc. While relatively simpler,
configuring such parameters correctly while minimizing cost and
meeting delay constraints is not trivial. In this paper, we present
COSE, a framework that uses Bayesian Optimization to find the
optimal resource configuration and placement for functions in a
serverless application. COSE uses statistical learning techniques
to intelligently collect samples and predict the cost and execution
time of a serverless function across unseen configuration values.
Our framework uses the predicted cost and execution time on
available locations to select the “best” configuration parameters
and placement for running a serverless application while satis-
fying customer objectives. We evaluate COSE on AWS Lambda
with real-world applications consisting of multiple functions (both
linear chains and service graphs), where we successfully found
optimal/near-optimal configurations. We also evaluate COSE over
a wide range of simulated distributed cloud environments that
confirm the efficacy of our approach.

Index Terms—Serverless, FaaS, AWS, IaaS

I. INTRODUCTION

N the last decade, serverless computinéﬂ emerged as a new

and compelling paradigm for the deployment of cloud ap-
plications and services. It promises new capabilities that make
writing scalable microservices easier and more cost-effective.
Most of the prominent cloud computing providers have re-
leased serverless computing platforms, and there are also
several open-source efforts including OpenLambda [[1]], Fn [2],
Kubeless [3], OpenWhisk [4], etc. Commercial providers also
allow a developer to deploy serverless applications in multiple
geographical regions as well as closer to the end user (so called
edge).

The serverless paradigm [5] at its core provides developers
with a simplified programming model for creating cloud ap-
plications that abstract away most, if not all, operational con-
cerns. Developers no longer have to worry about provisioning
and managing servers, and other infrastructure issues. Instead,
they can focus on the business aspects of their applications,
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and the backend is left to the cloud provider to manage. The
paradigm also lowers the cost of deploying and running cloud
code by charging for execution time — following a “pay as you
go” pricing model [6], [7] — where a user is precisely charged
for the time the application is running instead of allocation
time. Any application deployed over a FaaS platform can
be considered to be a serverless application. In this model,
a developer writes the code of a cloud application in the
form of stateless functions. The code, along with configu-
ration parameters such as resources (memory/CPU), location
(regions/edge) and triggers, is submitted to the platform, which
in turn executes the code, in response to a triggering event, in
a sandbox environment over an arbitrary infrastructur

In serverless computing, the abstraction of backend infras-
tructure management and ease of deploying cloud applications
come at the cost of little to no-control over the underlying
resources and execution environment of the application. A
developer has to rely on the configuration parameters of the
individual function to obtain the desired performance, hence
making it really critical to not only obtain desired performance
but also optimize the cost of cloud usage.

Motivation: To highlight the effects of resource parameter
configurations on the performance and cost of serverless func-
tions, we deployed serverless functions written in Python on
AWS Lambda, a popular FaaS platform. In AWS Lambda, the
only resource configuration is the amount of memory allocated
to the sandbox environment executing the function’s code. We
invoked each function with different memory configuration
to observe the effect on cost and performance, ie. run-
time. Figure shows how the run-time of these functions
decreases with the increase of memory size allocated to the
function. However, the marginal improvement in the run-time
decreases as memory increases. Figure shows the cost of
corresponding runs, which is the product of price per unit time
of computation with respect to allocated resources (Figure
and run-time (Figure[Ta). As shown in Figure[Ic| choosing too
small a value or too large a value for memory can result in
higher costs for running the functiorﬂ This behavior is because
the pricing model as exposed by the cloud providers is tightly
coupled with the amount of resources specified to execute
the serverless function (c.f. Figure [ID), and the dependency
between memory and CPU resource allocation — AWS Lambda
allocates CPU power linearly in proportion to the amount of

2Some of the key features of major serverless platforms are shown in Table

30ur results are consistent with recent studies [8] on the cost of executing
serverless functions.
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AWS Google Cloud IBM Cloud Microsoft Azure
Lambda Function Function Function
128 x i .
Memory (MB) {128 ... 10240} ie{1.248.1632) {128 ... 2048} Function can use up to 1536

Runtimes Supported

Node.js 14/12/10,

Go 1.x, Ruby 2.7/2.5,
Python 3.8/3.7/3.6/2.7,
Java 11/8, .NET Core 3.1/2.1,
and Custom Runtimes

Go 1.13, Python 3.9/3.8/3.7,
Ruby 2.7/2.6, Java 11,
Node.js 14/12/10,
NET Core 3.1,
and PHP 7.4

Node.js 12, Python 3.7/3.6,
Java 8, Swift 4.2, PHP 3.7,
Ruby 2.5, Go 1.15,
NET Core 2.2, and
Docker

.NET Core 3.1/2.1,
NET Framework 4.8,
Node.js 14/12/10/8/6,

Java 11/8, PowerShell 7/6,
and Python 3.9/3.8/3.7/3.6

Billing

Execution time based on
memory allocated

Execution time based on
memory & CPU allocated

Execution time based on
memory allocated

Execution time based
on memory used

Configurable Resource

memory & location

memory &
CPU-power

memory

n/a

Table I: Popular serverless platforms

memory configured [9]. We observed similar behavior when
setting configurable parameters on Google Function.

The examples above highlight the effect of resources (con-
figuration parameters) on the performance and cost of a
serverless function. Configuring these resources is a challeng-
ing task because the execution behavior of a function can
change over time depending on the cloud provider’s policies
and datacenter’s conditions. Wang et al. [10] performed a
detailed analysis of other factors affecting the performance of
serverless functions and showed that underlying infrastructure
and resource provisioning policies of a cloud provider can
affect performance. For example, having diverse underlying
infrastructure would cause instances of the same function to
execute on different resources (hardware and VM types), hence
resulting in variance in performance. Similarly, other factors
such as instance packing strategy, cold starts, I/O and network
conditions, and co-location with other functions would also
cause inconsistent performance even when the function is
allocated the same amount of resources. To elaborate on the
effect of co-location on performance, we ran experiments on
Apache OpenWhisk to show that co-location has a significant
impact on the run-time. Figure [Id] shows the effect of co-
locating serverless functions on OpenWhisk running on a
single-CPU machine. A user is oblivious to all these other
factors and has only limited control over a few parameters
affecting performance, i.e. memory and processing power.

Similarly, the placement of functions can also affect a
user’s perceived latency of an application. Our experiments
on AWS Lambda showed that different locations and regions
have varying user-perceived latency depending on the user’s
location. Moreover, the cost can also vary based on the
location — for example, AWS Lambda charges ~3x more for
computation run at the edge locations [11], [6].

Ideal Configurator: Given the issues raised above and
limited user control, finding the “best” configuration to run
a function while minimizing cost and meeting performance
and service-level objectives (SLOs) can be a daunting task.
The problem is even more challenging when a user is running
an application composed of interdependent functions (referred
to as service graphs) — where a user can still meet the end-
to-end performance requirement of the application by trading
off the performance of some of the functions for lower cost —
and when a user is presented with the option to pick between
multiple locations, i.e. different regions, edge, and core [12]

[13] [14]. Considering the above challenges, we believe an
ideal resource configuration and placement strategy should
address the following three aspects:

o Sampling Cost: Sampling the performance of an appli-
cation for all possible configurations can be expensive
as AWS Lambda alone offers tens of thousand of con-
figuration options (memory values, edge/core locations,
regions).

« Dynamic Adaptation: Serverless applications can be
running in varying conditions based on the data-center
resources and cloud provider’s policies. An ideal strategy
should adapt according to the current condition as one-
time configurations may not always be optimal.

« Service Graphs & Placement: In the case of an applica-
tion composed of multiple serverless functions, individual
resource configurations may not lead to the globally
optimal solution. Moreover, placement can affect the
user’s perceived latency and SLO.

Our Contributions: In this paper, we view the server-
less platform as a closed-loop feedback control system and
present COSE, a framework that uses Bayesian Optimization
to statistically learn (with as few samples as five) the rela-
tionship between cost/run-time and unseen configurations of a
serverless function. Using this learned relationship, henceforth
referred to as performance model of the serverless function,
our framework can pick the best configuration and placement
for a serverless application which not only minimize the cost
but also meet user-specified performance criteria (SLO) such
as response time/delay of running a serverless application. Our
framework is lightweight and has the ability to dynamically
adapt to changes in the execution time of a serverless function.

Our previous work on COSE [15] was one of the earliest
works that explored the configuration and placement of server-
less applications to optimize cost and performance using a
Machine Learning technique, namely Bayesian Optimization
(BO). In this paper, we make the following additional contri-
butions to [15]:

« We extend COSE to accommodate applications consisting

of arbitrary acyclic service graphs.

« We compare COSE with some of the state-of-the-art
solutions proposed and discuss COSE’s advantages.

« We evaluate COSE on two real-world applications, a
multi-function Personal Protective Equipment (PPE) de-
tection application and an Image Processing application.
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Figure 1: Serverless function’s performance with different memory sizes and co-location

« We enrich our review of related work by discussing
most recent work in the domain of configuring serverless
applications.

How to deploy COSE? 1t can be incorporated into an offering
by cloud providers similar to AWS Compute Optimizer [I6]; it
could be implemented as a value-added proposition by service
providers, or it could be directly leveraged by customers.
We evaluate our framework not only on a commercial cloud
provider, where we successfully found optimal/near-optimal
configurations in as few as five samples but also over a wide
range of simulated distributed cloud environments that confirm
the efficacy of our approach. In the next section, we describe
the COSE framework and its components in detail.

II. SystEm DEScRIPTION

Figure [2] provides an overview of our COSE framework.
We view the system as a closed-loop feedback control
system, where configurations are control parameters and
performance/end-to-end latency are feedback signals. It con-
sists of two main components: a Performance Modeler com-
ponent, which is responsible for learning the application’s
performance model, i.e. the relation between cost/run-time
and runtime configurations for the serverless function, and the
Config Finder component whose goal is to find the “best” con-
figuration and placement that minimize cost while satisfying
the SLO. As indicated earlier, COSE can be incorporated into
an offering by cloud providers; it could be implemented as a
value-added proposition by service providers; or it could be
directly leveraged by customers. For the rest of this work, we
will assume that our COSE framework has been adopted by a
Service Provider, and through standard APIs, a client registers
her serverless function with the COSE service.

Figure [2] highlights the interactions between our COSE
framework and its environment. Application clients, e.g. mo-
bile and IoT devices, issue requests to the cloud provider to
invoke a serverless function. Once the function is invoked, a
trace log, containing the cost and execution time, is generated
and stored. Our framework acts as a monitoring service and
utilizes the information from the trace to learn the performance
model of the function. Moreover, the client application also
reports the end-to-end delay (response time) to COSE. After
the learning phase converges, COSE uses Config Finder to find
the “best” configuration for an application that minimizes cost
while satisfying the SLO. To account for delays associated

with different locations/services supported by a designated
cloud provider (e.g. AWS Lambda’s “edge” vs. “core”), a
client reports the response times of its serverless function
invocations to COSE. If a change to the previous configuration
is needed, COSE connects to the designated cloud provider
using its APIs to modify the configuration. Next, we discuss
the approaches and choices for the components of our COSE
framework.
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Figure 2: System overview

III. COSE: THE Performance Modeler COMPONENT

Our COSE framework has been entrusted to execute a single
or a composition of serverless functions on a designated cloud
provider. It has the ability to configure the parameters of
individual functions in an application, e.g. amount of memory,
or the location of running the function by requesting it from
the Cloud Provider (CP). The goal is to learn the application’s
performance model and cost for various configurations. We
rely on statistical learning to learn this model since other
approaches, such as exhaustive search and parameter decent
algorithms, fail to capture an accurate estimate of the dynamic
execution model or have high exploration cost as described in
our previous work [15].

In this paper, we use Bayesian Optimization as the sta-
tistical learning approach to find the “best” configuration
for a serverless function. It builds a probabilistic model of
the underlying relation between cost and configurations, and
intelligently samples the performance of an application under
various resource configurations in order to reduce the sampling
cost.
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Figure 3: Bayesian Optimization example

A. Our Approach: Leveraging Bayesian Optimization

The objective of Bayesian Optimization (BO) is to optimize
over a black-box function, suppose g(x). In our case, the
function g(x) that we want to learn is the relationship between
performance/cost and all possible configurations x, not to
be confused with the serverless function/code itself that we
want to execute. Each configuration x is the combination of
resources (i.e. memory, CPU or both) and available locations.
Knowing this relationship g(x), one can readily locate the
configuration that minimizes cost, or that meets a certain
performance/delay requirement.

BO constructs a probabilistic model for g(x) in a predefined
parameter space and exploits this model to make decisions
about where to next sample/evaluate the function. It uses the
information from all previous observations of g(x) to decide
where to sample next. The goal is to learn g(x) in as few
number of samples as possible. Compared to deterministic
searching/learning, BO dynamically adapts its search based
on its current characterization and confidence interval of the
prediction model. BO dynamically picks the next sample that
gives more information and avoids unnecessary samples. BO
stops searching when it has high confidence in the predicted
model and the expected improvement for the predicted model
is small for new samples.

BO at work: BO observes the objective function g(x) at
different sampled values, i.e. performance/cost at different
configurations. It then models g(x) as a stochastic process
and computes a confidence interval for g(x) based on the
samples collected. Figure [3] shows a simple example where
configuration x consists of a single dimension, i.e., memory
for a serverless function. The actual underlying function (cost)
is given by the solid blue line. The confidence interval is an
area around the predicted function where the actual function
is passing through with 95% probability. In Figure [3a] there
are only two samples collected and the confidence interval is
higher in the region further away from the observed values.
The black dashed line is the predicted objective function of
g(x). As BO collects more samples (in Figures [3b]and [3c)), the
confidence interval gets smaller and the prediction is closer
to the actual values. BO intelligently chooses samples to
predict the underlying function g(x), based on the acquisition
function — Expected Improvement (EI) in this case. EI for
a sample collected at configuration x indicates the expected
improvement in the prediction of the underlying function
g(x). EI is calculated for each possible configuration in the

unexplored search space. A configuration with the highest EI
value is selected as the next sample. As shown in the lower part
of Figure [3a] the highest EI value is at 128 MB for the next
sample and this value is used as a configuration value for the
next run of the serverless function as shown in Figure The
mathematical details of acquisition function EI are available
at [17].

B. Adapting BO for COSE

To make BO run efficiently and accurately for serverless
functions, we had to make certain changes to the classical
BO. These changes are highlighted next.

(i) Initial Points: The choice of the initial points can guide
the search for the optimal solution in Bayesian Optimization.
A random choice of initial points can lead to longer con-
vergence time. Since a serverless function tends to have a
convex relation between the cost of execution and the chosen
configuration (cf. Figure [Ic), we chose the initial points as
uniformly distributed in the search space. For this work, we
chose four initial points.

(ii) Reduce the Search Space: We reduce the search space
by discretizing the possible configuration parameters. BO has
a computational complexity of O(C*), where C is the number
of possible configurations (data samples). In this work, we
used the memory values and the cloud providers as the set
of configuration parameters to choose from. We follow the
choices of memory values available to customers on AWS
Lambda as shown in Table[[} A developer can assign a memory
value between 128 MB and 10240 MB, with granularity of 1
MB. However, change in performance/cost for a function is
negligible for small changes in memory values. To reduce the
search space, we use a granularity of 64 MB at which we start
noticing impact on performance.

For this work, we have only two cloud providers or two
locations/services supported by a cloud provider, Edge-Cloud
and Core-Cloud, which are readily discrete.

(iii) Handling Noise: A cloud environment is shared among
tenants and a provider may decide to host multiple serverless
functions/applications on the same underlying resources. This
resource sharing can lead to performance uncertainty. Other
factors such as cold-start, hardware failures, resource-overuse,
etc., can also impact the execution time of a serverless
function running under the same configuration. We used a
noise parameter to account for this performance uncertainty.
We assume additive white Gaussian noise with hyperparameter



a. Finding the best value for @ is outside the scope of this
work. Our experimental results show that @ = 0.01 captures
most uncertainties in the serverless cloud platforms and we
chose this value for our system.

(iv) Adapting to Temporal Changes: BO assumes that the
target performance model is not changing while the samples
are being collected. However, in practice, the target cost-
configuration relation can change because of multiple reasons,
e.g. migration of the serverless function to a different machine
by the cloud provider, change in execution time based on the
change in the input data to the function, efc. To accurately
capture these dynamic changes in the model, we keep a history
of the configuration points sampled, and we discard the “old”
sampled points as we collect new samples using a sliding
window approach. This helps BO sample points again in the
search space where it had sampled in the past, thus capturing
potential changes in the target cost-configuration relation (cf.
Section [V-C).

(v) Convergence Criteria: As mentioned earlier, we use
Expected Improvement (EI) as the convergence criterion for
BO. When the EI for the next collected sample is below 5%,
we consider that BO has converged and we henceforth use our
BO predicted cost/run-time vs. configuration model to find the
least-cost configuration that satisfies the delay constraint on the
serverless function. Next we show how delay constraints for
serverless functions are met.

IV. COSE: TuE Config Finder COMPONENT

Given the performance/cost model of each serverless func-
tion in an application over available locations, predicted by the
Performance Modeler, it is easy for the second component of
our COSE framework, Config Finder, to find the configuration
that minimizes the cost and meet the SLO. In this section,
we discuss how Config Finder picks the configurations and
placement of functions comprising the application. We assume
that various functions of an application are being orchestrated
by one entity/user [18].

The Performance Modeler essentially provides two pre-
dicted models to the Config Finder. First, it provides the cost
model g/(x) for each function f — this is achieved by retrieving
logs information, i.e. cost and execution time. Second, it also
provides the performance model that estimates the end-to-end
delay T/(x) — this model is built using the user perceived
latency reported by the application.

With all the information above, it is easy for a service
provider to find a configuration that satisfies the (end-to-end)
delay constraint for a single serverless function. However,
the problem gets complicated when we have a service graph
where functions in the application represent nodes in a directed
acyclic graph (DAG) with the output of one function fed into
the next function(s).

Config Finder solves this problem in two steps. We assume
the application forms a directed acyclic graph G. For the
whole application to execute within the SLO, every unique
path should execute within the SLO. So, first, it identifies the
set of all possible paths P from the start function in the graph
(source) to the end function (sink). This is typically a one-
time path computation as the service graph will only change

if the developer alters the application. It then uses Integer
Linear Programming (ILP) to find the best configuration for all
functions such that the cost is minimized and SLO is satisfied.
Note that to solve for a single-function application, the service
graph degenerates to a single node.

We assume that for each serverless function f in graph G,
we choose a configuration consisting of the cloud provider
v € V and memory m € M, such that the total cost is minimized
and for each path p in P the delay constraint D is satisfied.
Note the cloud provider can be an edge, core, or a region.

Define Y/ € {0,1} = 1 if function f € G is deployed using
configuration x € C, 0 otherwise.

The objective of the Config Finder is to minimize the total
price paid for running all the functions of the application. This

is given by:
minimize ( Z Z gf(x)Y;’:) (D)

feG xeC

subject to:
1) Every path meets the SLO so as to guarantee that the whole
application will execute within SLO:

Z Z T/0Y/ <D VpeP )

fep xeC

where T/(x) is the predicted end-to-end delay for running the
serverless function f € p using configuration x € C.

2) A single configuration x € C is selected for each serverless
function in the application.

Z Y/ =1 VfeG 3)
xeC
The solution to this problem yields a least-cost feasible
solution, i.e. the resulting Yf , that gives the configuration x
of each serverless function f in the service graph. Note that
one can argue that ILP takes long to solve. However, since
a service graph typically consists of a few nodes [19], [L8],
[20], the total time to execute this ILP on a CPLEX solver
[21] is only a few seconds.

Micro Evaluation of Config Finder

To evaluate the Config Finder’s ability of finding the right
configurations while minimizing cost for service graph appli-
cations, we use the Image Processing workflow [22] shown in
Figure [ This application generates a thumbnail of an image
uploaded to the S3 database. It first makes sure the image
has a face (F1) and not a duplicate (F2) then in parallel, it
indexes the face (F3) and creates the thumbnail (F4). The
last step is to persist metadata. This application creates four
serverless functions implementing the above functionality and
was deployed using AWS Step Functions [23]].

3: Index
Face
/ Persist \

\ Metadata /

2: Face
Duplicate

1: Face
Detection

4: Create
Thumbnall

Figure 4: Image Processing Workflow



Evaluation Results: We ran the Image Processing workflow
with various memory configurations of the four serverless
functions to obtain each function’s behaviour with respect to
changes in memory allocated and then performed curve fitting
to obtain function profiles as shown in Figure [5] It can be
observed that the minimum achievable SLO is around 1346.91
ms and indeed when we ran our Config Finder, we obtained
the following memory allocations {F1 : 701, F2 : 3000, F3 :
232,F4 : 3000}. We also ran our Config Finder with other
SLOs and the results are shown in the figure — as we relax
the SLO, the cost goes down as expected.
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Figure 5: Function performance w.r.t. memory allocated

V. EvaLUATION IN A DISTRIBUTED CLOUD ENVIRONMENT

While the results of running our framework on AWS
Lambda (shown later in Section highlight the utility
of our COSE framework, evaluating additional aspects (like
convergence time, accuracy, robustness, efc.) of our framework
presents a new set of challenges because we have little or no
knowledge about the underlying infrastructure, the decisions
made by the cloud provider regarding the allocation of re-
sources, which functions are co-located, if the function had
cold-start or warm-start, and queuing, propagation and other
delays in the system.

To establish the efficacy of our COSE framework, in addi-
tion to the experiments on AWS Lambda, we also model a
distributed cloud provider and evaluate the framework across
a range of scenarios using extensive simulations. Since in the
simulated cloud environment we know the target function that
COSE is trying to optimize, we can compare the performance
of COSE against the “ground truth”.

A. Modeling Cloud Provider

We follow the execution/pricing model of AWS Lambda.
Other aspects of serverless platforms such as cold start,
instance lifetime, and the effect of co-location on performance
are obtained from our experiments or previous studies such as
[1O]. We also simulate the edge and core cloud similar to the
AWS Lambda offering, where the edge is more expensive but
closer to the end user. Details of our modeled cloud provider
can be found in [15], [24].
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Figure 6: BO’s Convergence and EI
B. Performance Metrics

We simulate a cloud provider that has two parameters to
be optimized, i.e. selection of location (edge vs. core) and
memory value for deploying a serverless function. In addition
to other unique scenarios, we look at the following two perfor-
mance metrics: (1) Convergence: COSE assumes that the Per-
formance Modeler has learnt the underlying cost/performance
model if the EI falls below 5%. As explained earlier, an ideal
approach to configure serverless applications would learn the
model quickly and have a small sampling cost as serverless
platforms charge users on per execution basis. Moreover, more
time spent on sampling means the application is running with
suboptimal configuration which can affect both cost and SLO.
(2) Prediction Accuracy: Using the learnt model, we also look
at how well our approach predicted the optimal configurations.

We also tested COSE’s ability to adapt in the face of
changes in the execution model and to configure applications
consisting of multiple serverless functions where each function
follows a different performance/cost model.

C. Simulation Results

Our evaluation showed that COSE can learn the optimal or
near-optimal configurations for a serverless function with as
few as 13-15 samples and can adapt to changes welﬂ Also,
COSE showed significant cost savings without compromising
on performanceﬂ

Single Function with Static Execution Model

Convergence: In this experiment, we look at how long it takes
for our BO-based Performance Modeler to converge and find
the underlying cost/performance relation. Since we are using
a cloud provider model, we know the underlying performance
function. Figure [6a] shows the CDF (taken over 100 runs) of
the number of configuration samples taken for BO to converge.
We observed that BO can converge, 95% of the time, in as
few as 15 samples. In Figure [6b] we show how EI decreases
as the number of configuration samples increases. The first
few samples have the highest EI value. However, as COSE
takes more samples, the EI value rapidly decreases. With each
new sample, BO improves its understanding of the underlying
performance function and subsequent configuration samples
contribute little to improving the prediction.

Prediction Accuracy: After BO converges, COSE starts pick-
ing the “best” possible configuration for serverless functions

4We note that for a commercial cloud provider with one parameter, COSE
was able to find a near-optimal configuration in 5 samples [[15]
SCOSE code and simulation parameters are available at [24].



using Config Finder. We use a function whose execution model
has an optimal configuration of {memory = 576 MB, location =
core-cloud}. In Figures[7al and [7Tb] we show the configurations
that COSE picked for each request and their corresponding
cost. For the first few requests (up to 15 requests), COSE is
exploring different configurations and locations. After the BO
in COSE converges, Config Finder starts picking optimal/near-
optimal configurations for the function, i.e. the corresponding
price paid for each serverless request is lowest.
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Figure 7: Configuration with COSE
Single Function with Dynamic Execution Model

Dynamicity: The performance of a serverless function can
be affected by factors like co-location, hardware it is placed
on, resource provisioning policy of provider, efc. Most of
these factors are beyond the control of the developer, hence
the change in execution model is inevitable. In case any of
these factors changes, the configurations that were optimal
before the change may no longer be optimal. We designed
COSE so it is resilient in the face of such changes and is able
to find new optimal configurations. Recall that COSE keeps
discarding older samples in order to adapt to new runtime
conditions. In order to test COSE’s ability to adapt to a
change in the underlying execution model, we created 500
requests for a serverless function. For the first 250 requests,
the function follows a certain execution model and has certain
optimal configurations. For the next 250 requests, we change
the execution model hence the optimal configurations. It will
take time proportional to the history for COSE to successfully
unlearn the previous execution model, learn the new model,
and start predicting the new optimal configurations.
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Figure 9: COSE for serverless function with dynamic
execution model

In Figure 0] we show the performance of COSE in terms of
sample error in memory for three scenarios. The sample error

E” is defined as the difference between the sampled memory
and the optimal memory: E° = |m* — m°|, where m® is the
memory being sampled by BO and m? is the optimal memory.
In the static case, the underlying function’s execution model
does not change, and COSE remembers the full history, hence
it takes a few samples for COSE to converge and the error
is small. In the static+window case, the underlying function’s
execution model does not change, and COSE remembers a
limited history (last 40 samples). As BO loses historical data,
the acquisition function periodically samples configuration
points for exploration, and hence, there is high variability in
memory selection leading to the higher error value. In the
third (dynamic+window) case, COSE not only remembers a
limited history but the serverless function’s execution model
also changes. We see the highest error in this scenario since
COSE is constantly collecting samples to adapt to the changing
execution model, and it takes time proportional to the history
to unlearn the previous execution model and learn the new one.
That is a trade-off that COSE can make: more history would
yield less sampling, but it would be slow to adapt to changes.
A shorter history would result in more sampling, but COSE
would adapt to changes more quickly. In all three scenarios,
COSE converges to optimal/near-optimal values.

Multi-Functions Application

Serverless applications are often composed of multiple func-
tions (forming a service graph) [25], where the output of one
function serves as input to the next, and the whole application
can be subjected to an SLO. These multi-function applications
can be either orchestrated from a workflow manager such as
Hyperflow [18], or cloud providers provide special services
for this purpose such as AWS Step Functions [25]. In this
experiment, we show how COSE can successfully find the best
resource and placement configuration for such applications.

In this setup, each request is a service chain consisting of
two or more functions. Each function has a different execution
model, hence different optimal configuration. Initially, we let
the BO in our Performance Modeler collect configuration
samples and wait for it to converge. Once BO has converged,
we observe the “best” configuration selected by COSE for each
function in the application such that the SLO for the whole
application (i.e. end-to-end latency) is satisfied. Although we
tested COSE for different chain sizes and service graphs, for
simplicity, we show results for an application consisting of
two functions.

In Figure we look at how the delay bound affects the
cost of cloud-usage. For loose delay requirement, COSE finds
the “best” location and memory for both functions, hence
lower cost. As the delay requirement becomes more stringent,
COSE has to make a decision of either increasing the memory
available to a function or placing it on the edge-cloud to reduce
the end-to-end delay (response time). Both of these choices
will raise the cost and that is why we see an increase in
the cost as the SLO becomes tighter. In Figure [8b] we show
the corresponding configurations selected for varying SLO.
Initially, because of looser SLO, COSE runs both functions on
the core-cloud to lower the usage cost and selects the memory
that lowers the cost. However, as the delay bound becomes
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Figure 8: Delay bounded chaining of serverless functions (application) deployed across edge and core clouds

smaller, COSE has to increase the memory available to either
function or change the location where they are deployed. As
the delay bound reduces to 42 seconds, COSE starts increasing
the memory available to the second function. At around 24
seconds of delay bound, COSE cannot keep both functions
on the core-cloud to meet the delay requirement. As shown
by arrow 1, COSE moves the first function to the edge-cloud
and decreases the memory needed for the second function on
the core-cloud. As the delay bound becomes even smaller,
COSE moves both functions to the edge-cloud as shown by
arrow 2 at around 15 seconds. Since the edge-cloud has lower
delays, COSE selects smaller memory values, compared to
previous values, to minimize the cost while fulfilling the delay
requirement.

In Figure [8c| we look at the actual delay experienced by
the chain. COSE meets the delay requirement of the chain
under most delay bounds. When the delay bound is higher
than 42 seconds, we do not see an increase in the actual delay
experienced by the chain because at the optimal configura-
tions, the chain’s total delay is 42 seconds. As explained in
Section COSE uses its estimation of delays in selecting
the configurations of the serverless functions in the chain. It
is critical that the predicted delay is close to the actual delay.
Figure [8d|shows that the actual delay experienced by the chain
is very close to the delay predicted by COSE.

VI. Running COSE oN AWS LamBbpA

In the previous section, we have shown by extensive sim-
ulations that COSE is able to learn the underlying execution
model, and to configure single functions and service chains
in a cost-effective way (less sampling). In this section, we
run COSE to configure applications running on a real cloud
provider. We run the COSE system on AWS Lambda, a
serverless offering from AWS. AWS Lambda allows users to
allocate up to 10GB memory to individual serverless func-
tionf] and also allows the edge deployment of certain functions
to reduce the access latency [12]. We employed COSE to
perform resource configuration and placement of single and
multi-function serverless applications. We next describe the
applications and COSE performance in detail.

Single Function Application on AWS

We test our COSE framework across four different repre-
sentative functions for serverless computing. These functions

%In AWS Lambda, CPU is allocated in proportion to memory.

can be considered equivalent to an application or task that can
be implemented as one serverless function, such as inference
models, various DevOps, etc. These functions represent the
different types of computation (combination of I/O-, CPU-,
network- and memory-intensive tasks) that a serverless appli-
cation typically performs. Briefly, we describe these functions
as follows: (i) CPU-intensive: This is a function that calculates
the trigonometric function atan of multiple numbers, hence
making it a CPU-heavy function; (ii) Memory-intensive: This
function applies a filter on a large image. This requires
extensive use of memory; (iii) I/O-intensive: This function
performs multiple I/O related operations on a file, i.e., open-
ing, reading and closing a file; (iv) Network-intensive: This
function downloads a large file from a server.

These functions were implemented in Python 3.6/3.7 and
deployed on AWS Lambda. Each function was deployed
as a separate AWS Lambda function. Figure [Ta] shows the
run-time for the CPU-intensive, memory-intensive and I/O-
intensive functions under different memory configurations. We
do not show the results for the network-intensive function since
changes in memory had little/no impact on the running time of
the function. This is because the network resources allocated to
a function do not change as we change the memory requested.
Figure[Ic|shows the price-memory relation for CPU-, memory-
and I/O-intensive functions.

Even though CPU- and I/O-intensive functions do not use
more than a certain amount of memory, their performance is
affected by the memory requested for the function. This is
because AWS Lambda assigns CPU share to each function in
proportion to the memory configured for the function. Hence
more memory will assign more CPU cycles to a function.

Evaluation Results: We ran the CPU-intensive, I/O-
intensive and memory-intensive functions shown in Figure
on AWS Lambda and employed COSE to configure resources.
Since the behavior of these functions is very similar to each
other, we show results for only the I/O-intensive function in
Figure To get an estimate of the optimal memory value,
i.e. the memory value that minimizes the price, we ran the
serverless function multiple times across different memory
values. As seen in Figure the I/O-intensive function has
the lowest price in the memory range 900MB-1400MB.

We use COSE to find the optimal configuration for this
function (with the goal of minimizing the cost, with no delay
requirement on the execution time of the function). For the
first few requests, as shown in Figure COSE explores
different memory values to build the performance model and
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once it learns the underlying cost-memory relation, it starts
suggesting optimal/near-optimal memory values in the range
900-1400MB. The corresponding cost for individual requests
(function invocations) is given in Figure [T0b] Again, COSE
finds the optimal/near-optimal cost for the function ($2.9x107
as seen in Figure [Ic| for the [/O-intensive function).

To compare COSE with static configurations, we invoked
the I/O-intensive function 100 times with the maximum
and minimum memory values, possible on AWS Lambda,
to get the best/worst running times for the function, and
also the corresponding cost. Figure shows the running
time of the serverless function when invoked with configu-
rations picked by COSE, maximum—memory=3008MBﬂ and
minimum-memory=128MB. The minimum-memory configura-
tion takes, on average, around 15 seconds to complete a
request, while the maximum-memory configuration takes, on
average, 1 second to complete the request. COSE performance
is very close to maximum-memory. Furthermore, the cost
incurred when using COSE is even less than the cost for
minimum-memory, as shown in Figure [I0d] because of lower
execution time due to near-optimal memory configuration
under COSE.
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Figure 11: PPE Detection Application

Multi-Functions Application on AWS

We next evaluate COSE on a multi-function Personal Pro-
tective Equipment (PPE) detection application, which upon
receiving an image from an end device, such as a surveillance
camera, performs PPE detection, and notifies authorities if
anyone violates PPE policy. The application’s workflow is
shown in Figure @ It consists of three main functions: a)
image preprocessing, b) detecting PPE, and c) notification.
All three functions were implemented using Python 3.7 and
utilize various AWS services such as S3 for storage, Amazon
Rekognition to perform PPE detection, and Simple Notification
Service (SNS) for notifications. For edge deployment we used
AWS Lambda@Edge. AWS Lambda@Edge has some key

"Now, AWS Lambda allows maximum memory up to 10GB.
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Figure 12: Memory and location w.r.t. SLO

characteristics: 1) the cost of running a function on the edge can
be 3x the cost of running the function on the core[26]], ii) prop-
agation delays are much smaller in the case of Lambda@Edge,
and iii) resources at the edge can be limited. In our case,
the core region was AWS region us-east-1, and the end client
was placed in a university campus in Minneapolis, Minnesota.
Lambda@Edge would execute deployment closer to the user.
Note that the current offering of Lambda@Edge supports only
certain types of computation (in response to events generated
by the Amazon CloudFront content delivery network (CDN))
and we believe cloud providers should enhance their service
by providing a more general-purpose computation utility. For
our experiment, we executed our functions on the edge using
the origin-request trigger as this is the only viable trigger type
that can configure large memory and intercept the request at
the edge.

Evaluation Results: Given the Performance Modeler has
learnt the cost and performance relations of all the functions,
in Figure [I2] we show the memory and location configuration
for various SLOs. SLO is measured as the time from first
request is sent and the final response of function-3 is received,.
Each marker is in the form function id@deployed _at where
function_id can be 1, 2 or 3 corresponding to Figure [IT]
and deployed _at can be edge (E) or core (C). Similar to the
simulation results, it can be seen that initially, when the SLO
is strict, COSE places all the functions on the edge because the
edge is closer to the end user (despite being more expensive)
but as the SLO is relaxed, COSE first reduces the memory
allocated to reduce the cost, but as SLO is further relaxed,
COSE places the functions on the core given the core is
cheaper.

Cost & SLO Tradeoff: In COSE, SLO dictates the overall
cost, stricter SLO can be met with higher cost. In Figure [I3]
we show the total cost and breakdown of individual function
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System Config Placement | Dynamic Cost
COSE M v v Low
Costless [19] v N X Low
Sizeless [20] v X X High
SLAM [30] M X v High
StepConf [31] v X v Low

Table II: COSE and other configuration techniques

cost. Initially, when the SLO is 0.9s, all the functions are
placed at the edge, as it has less propagation delays, but 3x
the cost. When the SLO is relaxed, the cost decreases rapidly
because now Config Finder can either ask for less resources
on the edge or move functions to the core cloud as it is more
cost-effective despite higher propagation delays.

VII. OtHER CONFIGURATION TECHNIQUES

Finding optimal running configurations for cloud appli-
cations is a well-studied topic and various algorithms and
techniques have been proposed to address this problem. These
include Reinforcement Learning, Genetic Algorithms, Ma-
chine Learning, etc. [27], [28]]. Most of these techniques can
also be extended to configure serverless applications [20], [[19],
[29]. We compare COSE and other configuration approaches
in Table [[M). We will next discuss two such techniques Size-
less [20] and Costless [19] in detail.

A. Sizeless

Sizeless [20] is a recent ML-based approach to configure a
serverless application. It trains a multi-target regression model
with the profiling data of thousands of synthetic functions.
Then using this model, Sizeless can predict the execution
model of a serverless application on unseen memory configu-
rations. The code and replication packages of Sizeless have
been released, including the measurement data of different
applications/functions running on AWS Lambda [32]]. To com-
pare COSE against Sizeless, we took the measurement data
of these functions — Facial Recognition (FaceSearch), Airline
Booking (NotifyBooking), etc. — and performed curve fitting
on each function to obtain the actual execution model. Then
we fed this execution model to COSE to see how long it takes
for COSE to learn the model. In Figure [T4 we report the
performance of COSE on one of these functions (FaceSearch)
— COSE performs similarly on other functions. In Figure
we show the measurement data from the Sizeless replication

package and the curve fit to that data. Figures [14b] and
14d|show COSE’s execution model prediction after 3, 7 and 10
samples. We observe that after 10 samples, COSE was able to
accurately predict the execution model. In our experiments,
COSE took anywhere between 6 to 10 samples to predict
the execution model with high accuracy. While we do not
claim that COSE will always take less samples than Sizeless
to converge to the execution model of a given function, we
believe COSE offers certain logistical advantages as discussed
next.

Logistical Advantages of COSE: COSE has certain logis-
tical advantages over Sizeless: 1) COSE has the ability to con-
figure applications consisting of multiple serverless functions
(service graphs) and meeting the SLO, while Sizeless targets
individual function configuration, which may not always lead
to the most optimal configurations for such applications; 2)
Currently, the released Sizeless code only supports appli-
cations written in JavaScript, while COSE can support any
function written in any language as long as the application
reports the user perceived latency; 3) COSE does not have
any extra cost overhead other than sampling, while Sizeless
needs to run thousands of synthetic functions on a serverless
platform to generate the training dataset (for offline training);
and 4) COSE can adapt to changes in the execution model
resulting from underlying infrastructure and temporal changes,
while Sizeless performs one-time configuration.

B. Costless

Costless [[19] is another technique, which given a serverless
application composed of multiple functions, decomposes it
across edge and core clouds and perform memory configu-
ration to minimize cost while meeting performance require-
ments. Costless does not infer/build the execution model of the
functions but relies on profiling the application under various
memory configurations and then feeds this data to a con-
strained shortest path optimization solver, similar to the Config
Finder functionality of COSE. It fundamentally differs from
COSE which attempts to build the cost/performance model
of the application first and then perform configuration and
placement. We believe approaches like Costless can benefit
from COSE’s Performance Modeler functionality to build a
more accurate and robust execution model and then feed it to
its optimization solver.

VIII. RELATED WORK

Resource orchestration for cloud applications is a well-
studied topic. Previous approaches [33], [34], [35], [36], [35]
help a user allocate resources to applications in cluster settings
to meet the SLOs and optimize resource usage.

From a developer’s perspective, CherryPick [27] helps find
a suitable VM configuration for cloud applications. Similarly,
CloudCmp [37] recommends a suitable cloud provider for
running a user application based on benchmarking results.
Both CherryPick and CloudCmp are offline tools that are
helpful to users before they deploy their applications. Similar
to COSE, Ernest [38] and ARIA [39] build the performance



= Measured
=== Prediction

== Fitted Curve 4 Observations

A Measured

Execution Time (ms

= Measured
-=- Prediction

= Measured
--- Prediction

4 Observations 4 Observations

; e — &-------- - S ——
500 1000 1500 2000 2500 3000 ° 500 1000 1500 2000 2500 3000
Memory (MB) Memory (MB)
(a) Face search - Execution  (b) COSE’s prediction after
Model 3 samples

500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

Memory (MB) Memory (MB)
(c) COSE's prediction after  (d) COSE’s prediction after
7 samples 10 samples

Figure 14: COSE predicting the execution model

profile of various applications to suggest resources. Commer-
cial cloud providers such as Google and AWS [40], [16] have
developed systems that based on the collected performance
metrics suggest suitable resource configurations. Most of these
approaches target traditional cloud services such as IaaS.
Unlike prior work that focuses on a particular application or
on configuring resources beforehand, i.e. before deployment,
the COSE framework can be used for any application running
as a serverless function and can adapt configurations on the
fly.

Another aspect of optimizing the performance of cloud
applications is adding more instances of the application in case
of a surge in demand. Most cloud providers offer autoscaling
services for this purpose which, based on collected perfor-
mance metrics, scale up or down the application. Researchers
have also suggested various (reactive and predictive) auto-
scaling techniques [41], [42], [43], [44], [45], [46]. These
techniques use methods such as performance modeling of the
application, machine learning for forecasting demand, etc. In
a serverless computing model, the scaling of an application is
taken care of by the cloud provider.

While serverless computing has been around only for a few
years, it has gained immense interest from the developer and
research communities, hence there has been a large body of
work as well as tools/techniques addressing challenges from
deploying to managing cloud applications in this computing
model [47], [48]. Detailed studies on different commercial
serverless platforms aim to characterize and understand the ar-
chitecture, resource provisioning, and performance variability
offered by the cloud provider [10], [49], [50]. Similarly, bench-
marking tools [51]], [52] for serverless platforms have also
been proposed to help the developer find a suitable provider.
These studies support various insights made in our paper, and
show that there can be high variability in performance because
of co-location, cloud provider’s resource packing policies, and
underlying hardware, thereby establishing the need for more
proactive approaches to configure resources to meet SLOs.

In regard to resource configuration for serverless applica-
tions, COSE is one of the first solutions in this space. Re-
cently, several new systems have been proposed to tackle this
issue including AWS’s own Compute Optimizer [16] which,
given a function’s performance logs, can suggest optimal
configurations for AWS Lambda — note, however, that since
this is a proprietary solution, non-AWS users may not be
able to employ it. Other works include Sizeless [20] and
Costless [19], which we discuss in detail and compare to
COSE in Section SLAM [30] utilizes distributed tracing

and performance modeling to find configurations for multi-
function serverless applications. StepConf [31]] is a more
dynamic approach to configure serverless applications but
does not perform function placement. Other approaches to
configure resources for serverless functions include local sim-
ulations [53] or tracing the underlying infrastructure through
logging [54]. These approaches are limited in nature as they
only target function configuration. On the other hand, COSE
targets both function configuration and placement dynamically
and does not require changes to the application.

IX. ConcLusioN AND FUTURE WoORK

COSE is a statistical learning-based system that leverages
Bayesian Optimization to learn the cost and execution time
model of the serverless application. Given this model, it
efficiently performs the resource configuration and placement
for functions composing the application. COSE requires no
application-side changes, has minimal sampling cost, and has
the ability to adapt to changes in the execution time of
serverless functions. We evaluated COSE in both simulated
distributed cloud environments and real serverless applications
running on AWS Lambda. Our results show that within a few
samples, COSE provides optimal/near-optimal configurations
and placement for serverless applications. We also discuss
other state-of-the-art solutions and show how COSE has less
logistical and cost overhead.

Future work includes the deployment of COSE as a ser-
vice over larger-scale multi-cloud providers and adapting the
solution for applications with wildly varying input workload.
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